How to Cloud for Earth Scientists: The ABoVE Science Cloud on ADAPT

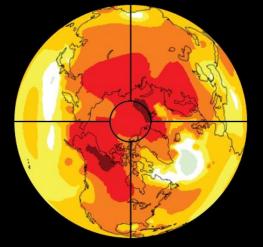
Peter Griffith (SSAI) and Elizabeth Hoy (GST, Inc.) NASA Carbon Cycle and Ecosystems Office

Contributors

- Dan Duffy, NCCS High Performance Computing Lead
- Scott Sinno, System Architect and System Administrator
- Hoot Thompson, System Architect and System Administrator
- Garrison Vaughn, System Architect and Applications Engineer
- Ellen Salmon, Computer Research and Development
- Laura Carriere, System Analyst
- Julien Peters, Software Developer
- Others.....

ABoVE is a large-scale study of environmental change in Arctic and boreal regions and the implications for ecological systems and society

Overarching Science Question:


How vulnerable or resilient are ecosystems and society to environmental change in the Arctic and boreal region of western North America?

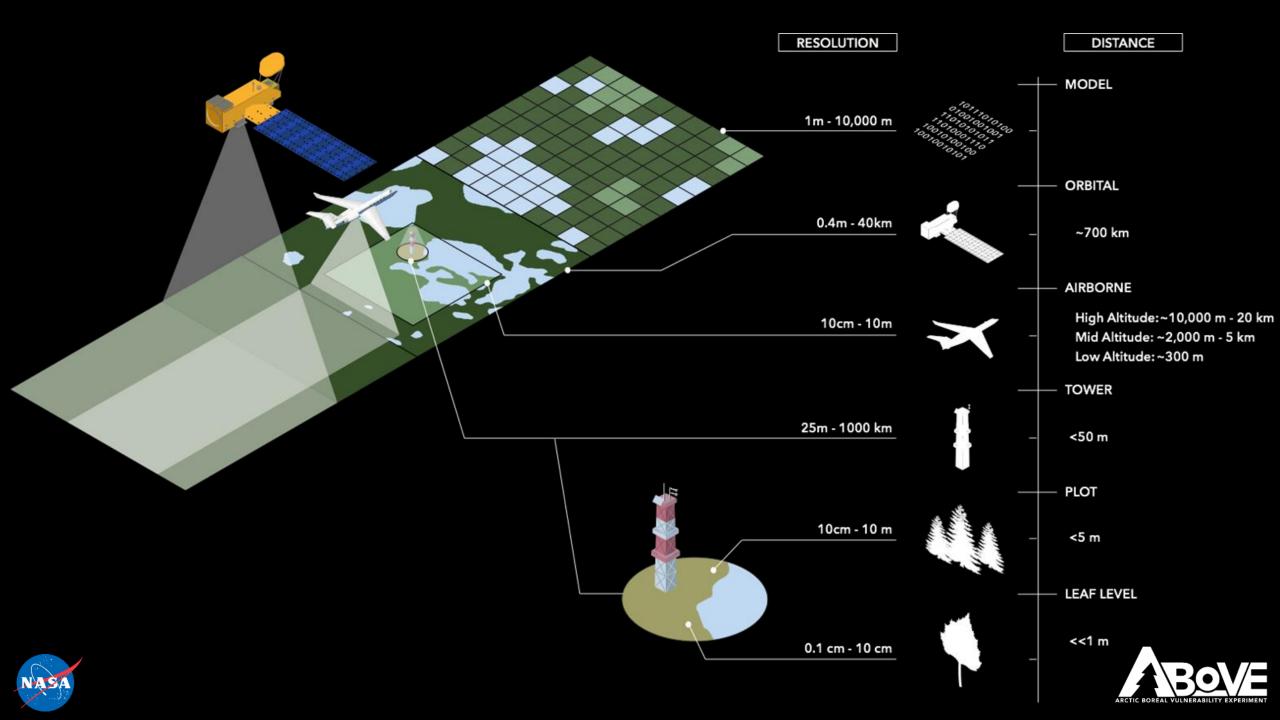
Causes of Change

Social Systems

Resilience Framework

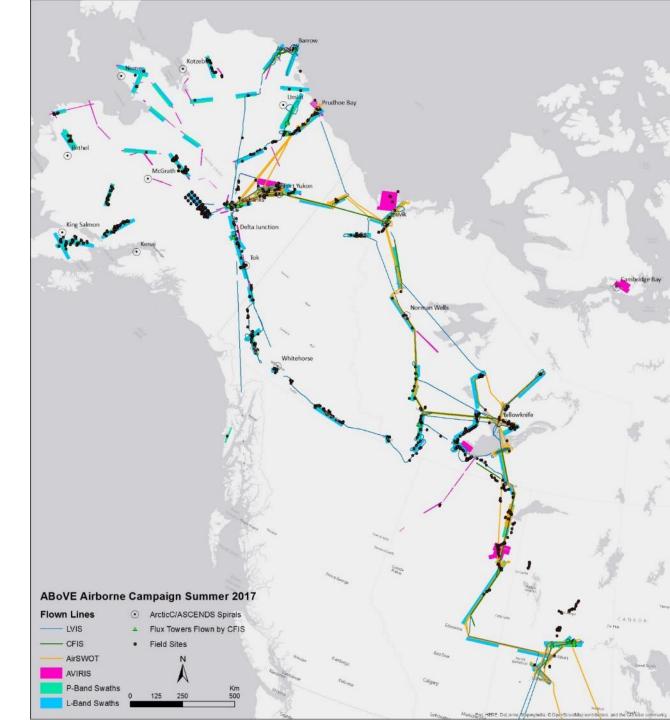
SEGUENCES

MPACTS


DRIVERS

Changes to Ecosystems

Ecosystem Services



Where are we working?

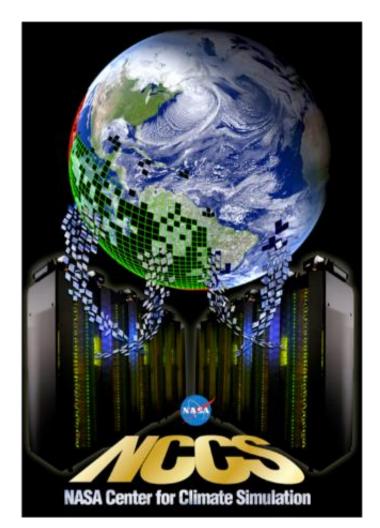
- 80 total projects (including NASA funded, Partner, Affiliated)
- 550 participants from universities, national agencies/labs, state/provincial/territorial groups, private, and native/aboriginal organizations
- Summer airborne campaign:
 - 10 aircraft, 20 deployments, and 200 science flights
 - April to October 2017
 - 4 million km² in Alaska and Canada

Why do we need a new approach?

- Science datasets are becoming larger, with intensive computation needed for data processing
- And collaboration across diverse research groups is essential,
- But it is often time consuming and expensive to transfer, download, process and share data with others
- Therefore the ABoVE Science Cloud (ASC) was created to meet the needs of ABoVE investigators and encourage collaboration within the field campaign.

NASA Center for Climate Simulation (NCCS)

Integrated high-end computing environment supporting the specialized requirements of Climate and Weather modeling.


- High-performance computing, data storage, and networking technologies
- High-speed access to petabytes of Earth Science data
- Collaborative data sharing and publication services
- Advanced Data Analytics Platform (ADAPT)

Primary Customers (NASA Climate Science)

- Global Modeling and Assimilation Office (GMAO)
- Goddard Institute for Space Studies (GISS)

High-Performance Science

- <u>http://www.nccs.nasa.gov</u>
- Located in Building 28 at Goddard
- Dan Duffy, High Performance Computing Lead (Code 606.2)

Analysis is Different than HPC

High Performance Computing	Data Analysis			
Takes in small amounts of input and creates large amounts of output	Takes in large amounts of input and creates a small amount of output			
Relatively small amount of observation data, models generate forecasts	Large amounts of observational/model data generate science			
Tightly coupled processes require synchronization within the simulation	Loosely coupled processes requiring little to no synchronization			
Simulation applications are typically 100,000's of lines of code	Analysis applications are typically 100's of lines of code			
Fortran, Message Passing Interface (MPI), large shared parallel file systems	Python, IDL, Matlab, custom			
Rigid environment – users adhere to the HPC systems	Agile environment – users run in their own environments			

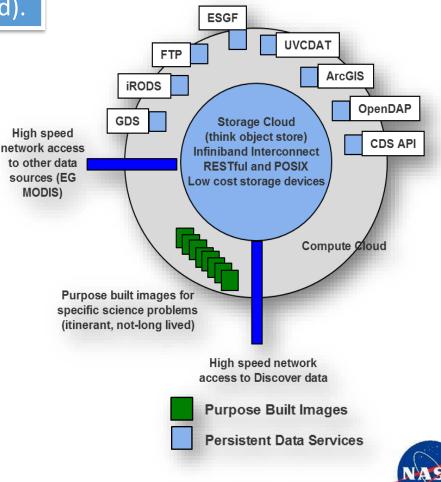
Advanced Data Analytics Platform (ADAPT) "High Performance Science Cloud"

High Performance Science Cloud is uniquely positioned to provide data processing and analytic services for NASA Science projects. A portion of ADAPT is dedicated to ABoVE (the ABoVE Science Cloud).

Adjunct to the NCCS HPC environment

- Lower barrier to entry for scientists
- Customized run-time environments
- Reusable HPC/Discover hardware

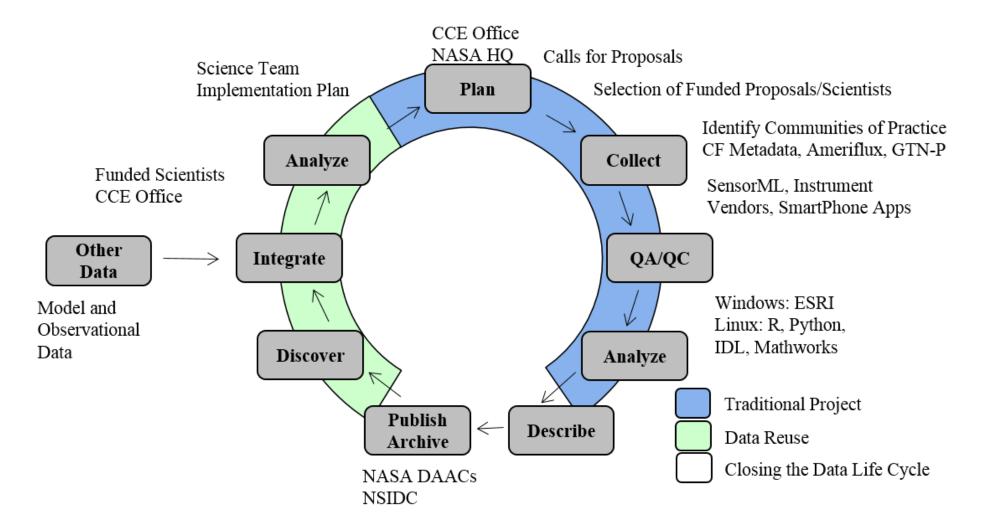
Expanded customer base

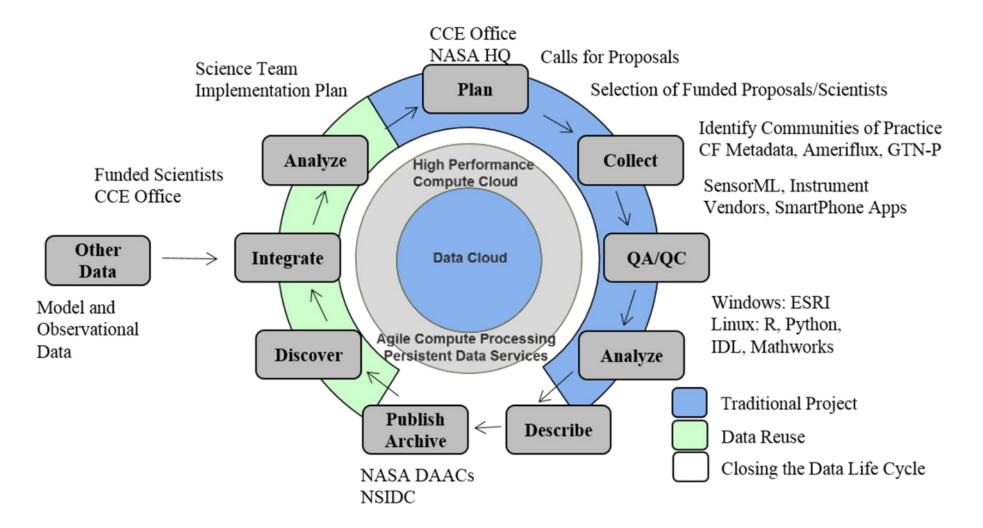

- Scientist brings their analysis to the data
- Extensible storage; build and expand as needed
- Persistent data services build in virtual machines
- Create purpose built VMs for specific science projects

Difference between a commodity cloud

- Platform-as-a-Service
- Critical Node-to-node communication high speed, low latency
- Shared, high performance file system
- Management and rapid provisioning of resources

Conceptual Architecture




The ABoVE Science Cloud is the center of the data lifecycle.

Augmented from Rüegg et al 2014 in *Front Ecol Environ*

The ABoVE Science Cloud is the center of the data lifecycle.

Augmented from Rüegg et al 2014 in *Front Ecol Environ*

System Components/Configuration

	Capability and Description	Configuration
9-	Persistent Data Services Virtual machines or containers deployed for web services, examples include ESGF, GDS, THREDDS, FTP, etc.	Nodes with 128 GB of RAM, 10 GbE, and FDR IB
6	DataBase High available database nodes with solid state disk.	Nodes with 128 GB of RAM, 3.2 TB of SSD, 10 GbE, and FDR IB
	Remote Visualization - planned Enable server side graphical processing and rendering of data.	Nodes with 128 GB of RAM, 10 GbE, FDR IB, and GPUs
	High Performance Compute More than 1,000 cores coupled via high speed Infiniband networks for elastic or itinerant computing requirements.	~100 nodes with between 24 and 64 GB of RAM and FDR IB
3	High-Speed/High-Capacity Storage Petabytes of storage accessible to all the above capabilities over the high speed Infiniband network.	Storage nodes configured with multiple PB's of RAW storage capacity

l

ASC Software Stack

Above.nasa.gov @NASA_ABoVE

Staged / Common Data Sets in ABoVE Science Cloud

Common datasets "Staged" for ABoVE investigators in ABoVE Science Cloud

- Staged and available for direct use
- Individual investigators don't have to invest time to locate and transfer data into system
- Avoids duplications of large datasets on system
- Additional datasets can be added, including generated data from ABoVE PI
- Data Services Manager to locate data

Example Download Times For 80TB

ABoVE Science Cloud Data Holdings

Large Collections	Amount
Landsat	186 TB
MODIS	MODAPS collection remotely mounted
MERRA & MERRA2	406 TB
DigitalGlobe Imagery	2.8 PB
Total	> 3 PB

Other Data Sets

- Elevation datasets: ArcticDEM, CDEM, ASTER GDEM, etc.
- Vegetation products
- Land cover products
- Products generated by the science team

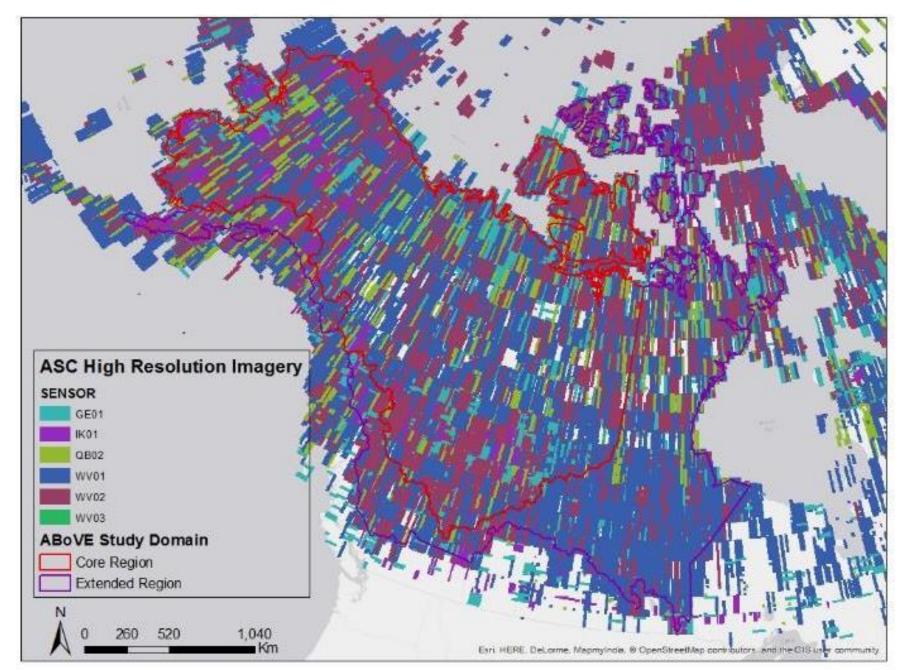
*Others as the team requests...

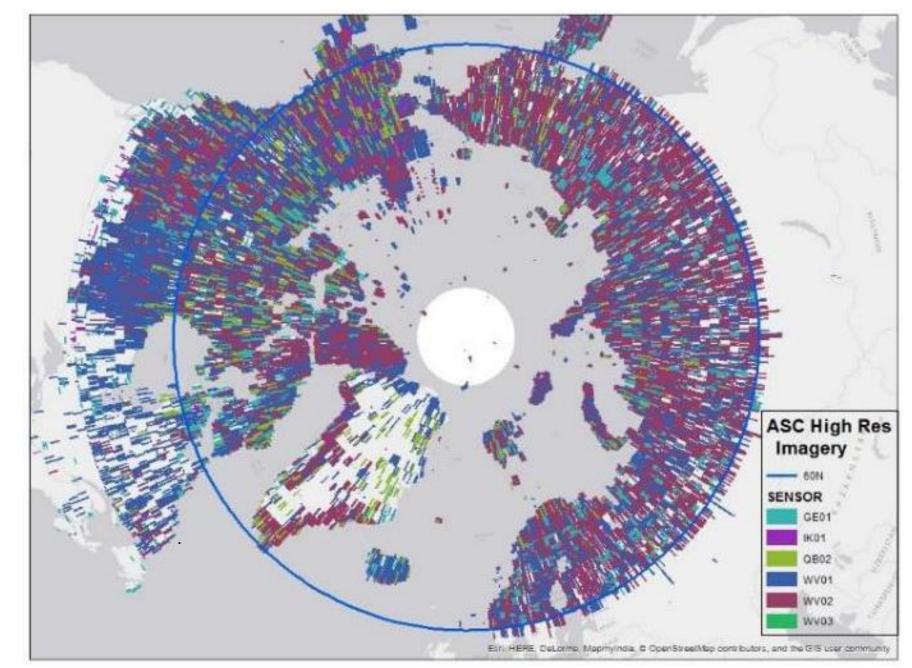
Find a list of all common datasets available on the ASC here>>>

NGA/DigitalGlobe High Resolution Commercial Satellite Imagery

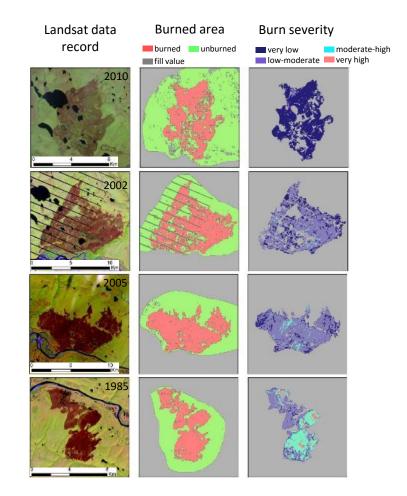
National Geospatial Intelligence Agency (NGA) has licensed all DigitalGlobe ≥ 31 cm satellite imagery for US Federal use, i.e., NSF, NASA and NASA funded projects.

- Archive of >4.2 billion km² of data from 2000 to present
- Data from six different satellites: Worldview-1, 2 and 3; Ikonos; Quickbird; and Geoeye-1


Satellite	Bands	Nadir Panchromatic Resolution (m)	Nadir Multispectral Resolution (m)	
Ikonos	Pan, R, G, B, Near IR	0.82	3.2	
GeoEye	Pan, R, G, B, Near IR	0.41	1.65	
Quickbird	Pan, R, G, B, Near IR	0.55	2.16	
WorldView-1	Panchromatic only	0.5	N/A	
WorldView-2	v-2 Pan, R, G, B, Near IR 1, Near IR 2, Coastal, Red 0.46 Edge, Yellow		1.85	
WorldView-3	Same as WV-2 plus 8 SWIR bands and 12 CAVIS bands	0.31	1.24	

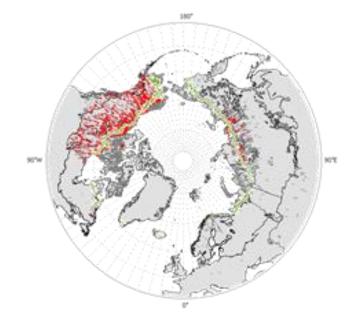

ABoVE Science Cloud DigitalGlobe Imagery: Study Domain

ABoVE Science Cloud DigitalGlobe Imagery: Circumpolar


Examples of the ASC In Action

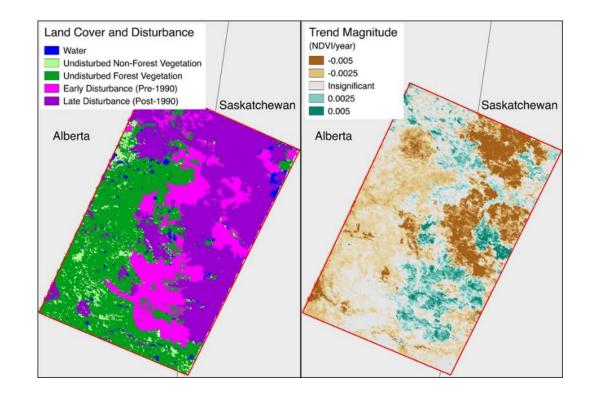
Fire History for ABoVE – T. Loboda & M. Miller

- Fire history across the ABoVE study region is compiled from available and new (Miller et al. in prep) data products and enhanced
- Multiple VMs on the ASC are used to process Landsat and MODIS data to develop the burn severity characterization

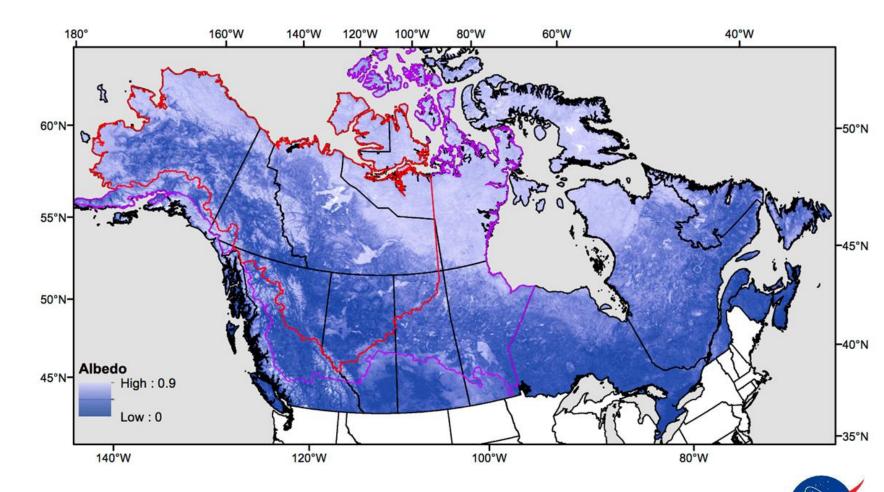


Forest Canopy Surface Elevations – C. Neigh & P. Montesano

- Understanding forest patterns using DigitalGlobe high-resolution satellite imagery
- Using multiple VMs and Ames Stereo Pipeline (ASP) on the ASC to process Digital Elevation Models



Landscape-Scale Histories of Disturbance, Seasonality and Greenness Trends - C. Woodcock & D. Sulla-Menashe


- 30+ year historical record and ongoing characterization of disturbance events and phenology across the ABoVE study domain
- Using multiple VMs to move Landsat data into the ABoVE grid and then develop the landscape histories

Understanding the Causes and Implications of Enhanced Seasonal CO₂ Exchange in Boreal and Arctic Ecosystems – B. Rogers

- Modeling driving factors of post-fire albedo trajectories
- Creation of mean albedo maps
- Fire combustion mapping

N	lational Aeronautics and Space Administration	 Visit NASA.gov Visit NASA's Terrestrial Ecology Website
		a.gov/sciencecloud.html
ARCTIC BOREAL VU	LNERABILITY EXPERIMENT	Sign in My Account Sign Out
Home	The ABoVE Science Cloud (ASC)	
About		
Science Team	 Referenced on page A.4-8 in NASA Research Announcement for T ABoVE <u>NNH16ZDA001N-TE</u> 	Terrestrial Ecology: Airborne Campaign For
Meetings & Events	Science Cloud Setup Instructions	
	About the Science Cloud	
Publications	Webinar	
Data		
Safety & Logistics	The NASA Center for Climate Simulation (NCCS) has partnered wit Office (CCE Office) to create a high performance science cloud for	this field campaign. The ABoVE Science Cloud
Funding	combines high performance computing with emerging technologie and processing geographic information to create an environment s	pecifically designed for large-scale modeling,
Jobs	analysis of remote sensing data, copious disk storage for "big data integration of core variables from in-situ networks. The ABoVE Sci accelerate the pace of new Arctic science for researchers participa	ence Cloud is a collaboration that promises to

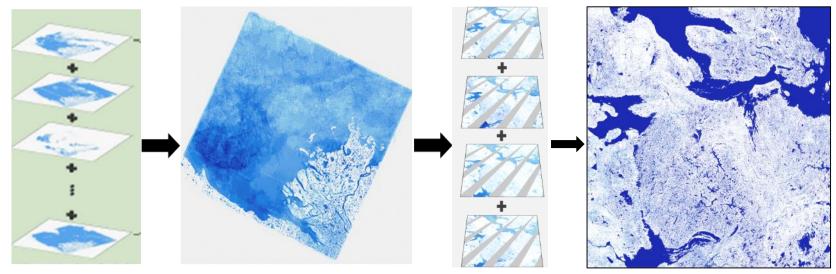
Seeing the ABoVE Science Cloud in Action Presentation by Mark Carroll

Transitioning from workstation to cloud computing

Mark Carroll

Biospheric Sciences Lab

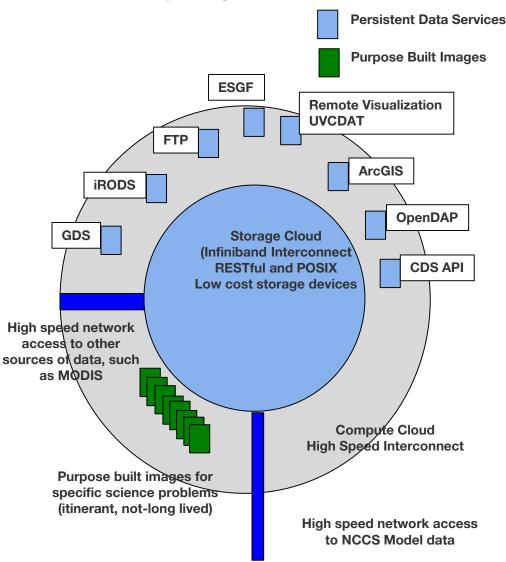
Science Systems and Applications Inc.



Determining the Extent and Dynamics of Surface Water for the ABoVE Field Campaign

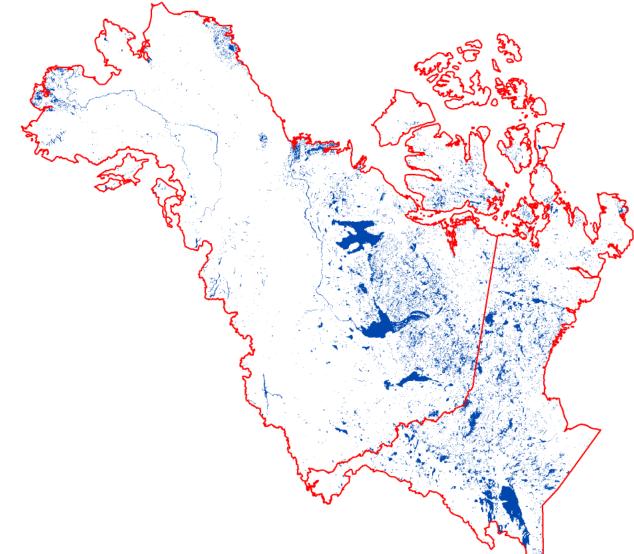
- Utilize the dense time series of Landsat data in the North American Arctic to create a time series of surface water maps
- We use the full available time series to minimize the impact of anomalous weather events (drought, flood) in individual scenes
- Maps will represent surface water extent for 3 epochs 1990 – 1992, 2000 – 2002, and 2010 – 2012
- These maps can be used to identify hotspots of change and to identify field sites for study during the ABoVE campaign

Determining the Extent and Dynamics of Surface Water for the ABoVE Field Campaign


- Decision tree classification on each Landsat scene
- Extract theme (water) from each date, build data stack
- Sum water observations for entire epoch
- Mosaic each themed scene into ABoVE tile (no overlap)
- Sum mosaicked tiles to create a total per theme for each ABoVE tile (utilizes all available observations including overlap)

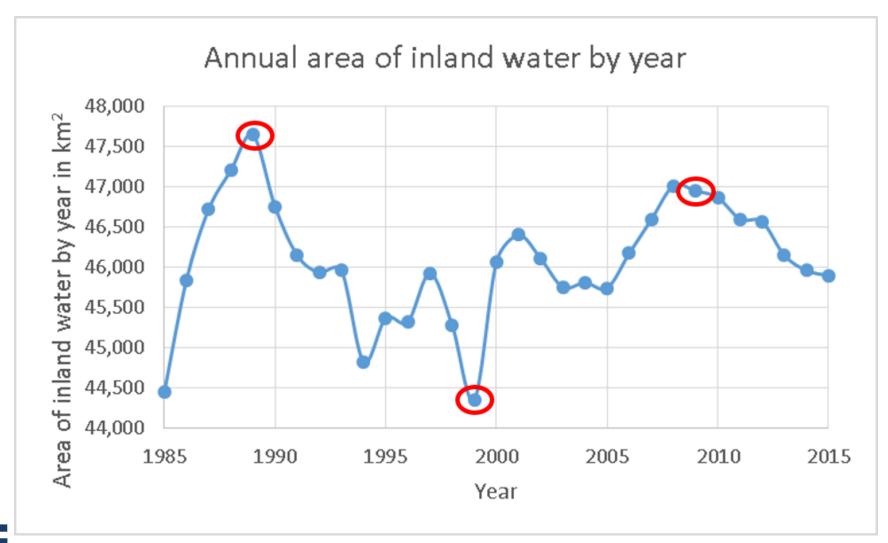
Determining the Extent and Dynamics of Surface Water for the ABoVE Field Campaign

- Original processing plan involved a couple of workstations and rotating data through an 8TB RAID
- Anticipated processing time 9 – 12 months
- Only final outputs would be kept online
- No time available for reprocessing
- Enter the Science Cloud at NCCS and GSFC High Performance Computing

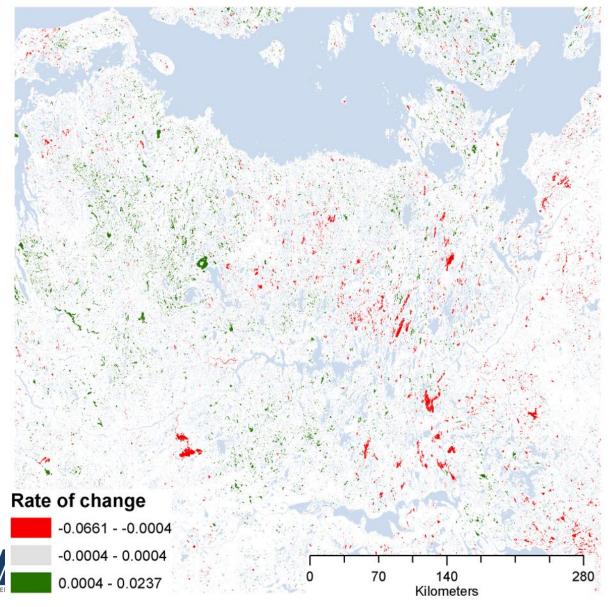



Determining the Extent and Dynamics of Surface Water for the ABoVE Field Campaign

Final result is a ۲ time series of three maps 10 years apart that can be used to show not only the location of water at a given time period but also the change in surface water extent through time.

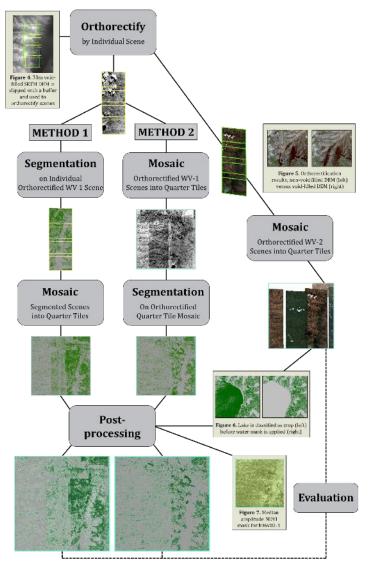


- Northern Nunavut province in Canada
- Includes Queen Maud Gulf Bird Sanctuary
- Limited impact from anthropogenic pressures



size in ha	<0.1	0.1 to 1	1 to 10	10 to 100	100 to 1,000	1,000 to 10,000	10,000 to 100,000	>100,00 0
total	251,884	202,412	167,450		4,836	257	29	9
change p0.05	52,475	55,081	45,724	13,330	1,369	62	4	2
fraction(total)	21%	27%	27%	27%	28%	24%	14%	22%
decreasing	31,810	21,438	17,216	4,960	527	32	3	2
increasing	20,665	33,643	28,508	8,370	842	30	1	0
d fraction	61%	39%	38%	37%	38%	52%	75%	100%
I fraction	39%	61%	62%	63%	62%	48%	25%	0%

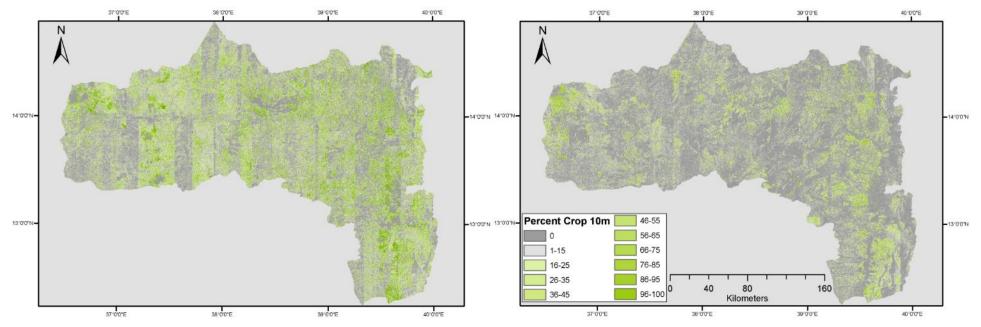
- Over 60% of water bodies are < 1 ha
- Smallest and largest water bodies decreasing in size
- Middle sized water bodies are increasing



- Over 675,000 water bodies in the study area
- Linear regression (OLS) performed on area per water body per year
- Over 168,000
 water bodies
 exhibit change with
 p < 0.05</p>

Crop Mapping Tigray, Ethiopia

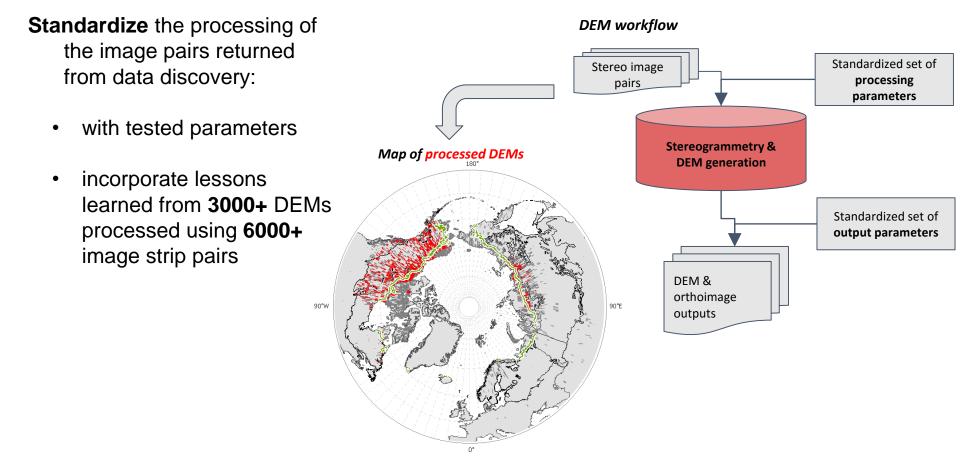
Tigray crop mapping


- Initial plan was to use very high resolution data to train a classification algorithm
- Given data and processing capability in the cloud we transitioned to using VHR to generate the entire map
- Methodology began in linear fashion treating scenes individually
- Experience showed that generating mosaics prior to classification improved results
- Along the way a new approach to evaluation was created

Above.nasa.gov @NASA_ABoVE

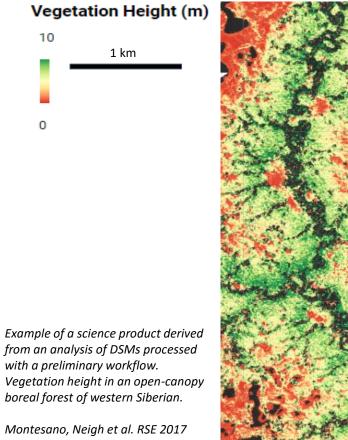
Crop Mapping Tigray, Ethiopia

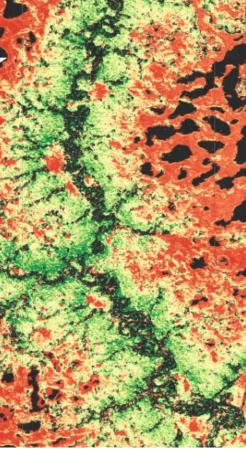
Method Evolution


- Image on left shows original method using VHR data that resulted in distinct boundaries between scenes
- Image on right shows the improved method with far fewer errors and hard boundaries between scenes
- Working in the cloud enabled rapid reprocessing and assembly of thousands of scenes in just a few days
 - There are ~85 billion pixels in the mosaicked maps

- Nearly 500 billion pixels were processed to get enough information to generate these mosaics
- End to end processing can be completed in just a few days Above.nasa.gov @NASA_ABoVE

DEM Workflow: standardize & optimize in HEC Paul Montesano and Chris Neigh




DEM Workflow: produce science-ready data

Reduce high start-up costs associated with working with massive datasets on HEC platforms

Extend science opportunities to other PIs

Our automated DEM workflow will streamline the (1) ingest & (2) processing of stereopairs, and (3) output of science-ready DEMs and orthoimages.

Automated protocols for generating very high-resolution commercial validation products with NASA HEC resources

PI: Chris Neigh, NASA GSFC

Architecture Overview **Goals and Objectives** Enhance scientific utility of sub-meter DigitalGlobe data by: DigitalGlobe Current process Proposed process ≊USGS 1) Improving VHR data discovery: using databases and mosaic datasets within NASA-GSFC's ADAPT global archive of DG VHR normalized ortho mosaic NA SA imagery; 2) Producing on demand VHR 1/2° degree mosaics: automating estimates of surface reflectance, ortho-rectifiying and normalized 1 ICCS ADADI m mosaics for pan and 2 m for multi-spectral; and ta Transfer and Store "2P 3) Producing on demand 2 m posting DEMs: leveraging HEC ASA PI Direct Access processing and open source NASA-ARC ASP software. irect Read/Download Key Milestones Approach **Develop a HEC API to:** 1. identify NASA-GSFC archived VHR DG data and Ortho-rectify, Automated database, beta 07/2018 TRL_{in} = 2 atmospherically correct, identify clouds/shadows, mosaic, and convert to GeoTiff in a standard GIS ready projection; Surface reflectance WV-2, beta 10/2018 2. identify NASA-GSFC archived VHR DG stereo pair data and produce orthos and DEMs. ½° Mosaics and DEMs, beta 1/2019 Co-Is/Collaborators System Interface, API, beta 05/2019 Mr. Mark Carroll, Dr. Paul Montesano, Dr. Compton Tucker, Dr. Optimization of performance 07/2019 Alexei Lyapustin, Dr. Daniel Slayback, Dr. David Shean, Dr. Oleg Alexandrov, Mr. Mathew Macander, Dr. Daniel Duffy, Dr. 10/2019 TRL_{out} = 5 Client libraries and API tools completed Jorge Pinzon, Dr. Gerald Frost and Dr. Scott Goetz

Above.nasa.gov @NASA ABoVE

Conclusions

- Six years ago all of my work was accomplished on local workstations
- Since then I have transitioned nearly all of my workflows into the cloud to take advantage of distributed and parallel processing
- This has freed up time to do analysis and enabled me to ask bigger questions
- Future plans all focus on use of cloud technologies to facilitate the processing of large datasets to answer science questions

